Mid-IR and Near-IR in situinstrument needs

Dr. Christopher R. Webster Jet Propulsion Laboratory California Institute of Technology

NASA Code Y
Workshop on Spectroscopic Needs
for Atmospheric Sensing
San Diego, California, USA
22-26 October, 2001

Table of Contents

- Laser absorption spectroscopy
- Overview of aircraft, balloon, and ground-based instruments
- TABLES of in situ laser spectrometers
- IR Vibration-Rotation Line Shapes
- Spectroscopic needs
- Calibration methods for in situ laser spectrometers
- Measurements of Atmospheric Tracers N₂O, CH₄, CO
- Atmospheric Measurements of H₂O
- Near-IR H₂O Measurements
- Measurement of Water Isotopes HDO, H₂¹⁸O, H₂¹⁷O
- Near-IR and Mid-IR Spectroscopy of Water Isotopes HDO, H₂¹⁸O, H₂¹⁷O
- Near-IR and Mid-IR Isotopic CO₂
- Near-IR LAS for Global CO₂ Mapping
- Outlook for TDL and QC in situ laser spectrometers
- Summary of Near-IR Spectroscopic Measurement Needs
- Summary of Mid-IR Spectroscopic Measurement Needs

Laser Absorption Spectroscopy

- Narrowband (0.0005 cm⁻¹) tunable diode lasers (TDL) and Quantumcascade (QC) lasers matched to absorption line(s) (1.3 – 10 μm) of gases of interest.
- Numerous TDL-based absorption instruments have been flown on balloon & aircraft missions.
- For Earth, well-suited to certain target gases: H₂O, N₂O, CH₄, CO, HCI, NO₂, HNO₃, H₂CO, isotopes of H₂O, isotopes of CO₂.
- Sensitivity sub-parts-per-billion.

Overview of Aircraft, Balloon, and Ground-based instruments

~ 30 TDL/QC laser spectrometers currently measuring Earth atmospheric gases

Laser Sources:

- Near-IR TDLs (InGaAsP) operate cw at room temp (TE cooler)
- Traditional Mid-IR (Pb-salt) TDLs operate at LN₂ temps
- Mid-IR QC lasers (InGaAs) operate cw at LN₂, pulsed at room temp

Measurement Geometry:

 Open path (large ΔT) or flowing cell (Tregulated)

Technique:

- Line-locked: higher duty cycle (precision), poor line information
- Tunable: full spectral line information, lower duty cycle (precision) [2f or sweep integration]
- LAS and CRDS

Unified N_2O : GCMS has better absolute accuracy, but laser spectrometers offer superior sensitivity, specificity, precision, and response time.

Mid-IR Aircraft, Balloon, and Ground-based Spectrometers

	20.00	- 1 ·	To a		77. 16			C 111 41		1.
Instrument	Path	Technique		Institution			1)		Precision 1 σ	Accuracy
	Herriott	Tunable TDL and QC	Chris Webster	JPL		CH ₄ CO CO ₂ HCl NO ₂	1256 2169 2233 2926 1603	flight CO ₂ Pre-flight Pre-flight In-flight CH ₄ Pre-flight	0.3% in 1.3 sec 1% in 1.3 sec (trop) N/A 1% 5%	± 1.8% ± 3% ± 3% N/A 3% 5%
	Open path Herriott cell 64 m				Balloon	N ₂ O CH ₄ HCl	2927.1 2925.9	Pre-flight In-flight CH ₄	3 %	± 5% ± 5% ± 10%
ALIS		Tunable QC	Chris Webster	JPL		CO ₂	2303	0	0.1% for line ratio in 1.3 sec	Isotopic ratio
	Flowing Herriott cell		M ax Loewenstein, Hansjurg Jost				2 2 0 6 3 0 2 8	In-flight		3.5% in 2 sec
	Flowing White cell	Line-locked		NASA Ames	E R -2	N ₂ O	2232	In-flight	about 0.1%	1% 1σ
	Open path 0.3-1 km (Lowered retro)			JP L		N ₂ O CH ₄ CO NO ₂ NO HNO,		Spectroscopic line parameters	1-5% in 30 sec	2-15%
	Flowing cell 36 m Herriott Cell	Line-locked	Glen Sachse	NASA LaRC	D C -8	CO CH ₄	3018 ±		0.1% in 1 sec	2 % 1 % 1 %
	Flowing cell 36 m Herriott Cell	Line-locked	Glen Sachse	NASA LaRC			3018 ±	In-flight NOAA/CMDL Standard		2 % 1 %
FLAIR	Flowing	and 2f		Canada, M P I Germany.		NO ₂ HCHO CO	1629 1730 2073	-		
NERC IFM A spectrometer	Open path		Howieson, Duxbury, Swann,Gardiner,	Strathclyde U., NPL, &	Balloon 5-30 km	C H ₄	6097	??????	??????	??????

Mid-IR Aircraft, Balloon, and Ground-based Spectrometers (contd.)

Instrum ent	Path	Technique	PI	Institution	Platform	Gas	Line (cm ⁻¹)	C alibration	Precision 1 σ	Accuracy
NERC COSMAS NIR	Flowing cell or open path	Tunable		Strath cly de U., & Imperial College, UK	Ground or aircraft	C 2 H 6 C H ₄ , C H 3 O H H 2 C O			T B D	T B D
N C A R T D L A S	??????	??????	Bill Mankin and Mike Coffey	N C A R	W B-57 C-130	C O , N 2 O	??????	??????	3% in 30 sec	5 %
NOAA TDLAS	??????	??????	Eric Richards, Ken Kelly	N O A A	W B - 57	СН₄	??????	??????	??????	<mark>5 %</mark>
OPTIM A	Open path Herriott cell	Rapid Scan HF 2f	Jim Podolske	NASA ARC	D C -8	HNO ₃	1721- 1723	A bsolute spectral parameters	T B D	T B D
C avity R ingdown L aser Spectrometer	??????	??????	Jim Anderson	H arvard U niversity	W B - 57 F	C H ₄	1333	Pre-flight + in-flight gas addition	0.3% for 10 sec	1 %
Eddy – Correlation TDLAS	Flowing cell (Herriott)	Dewar based, tunable system with line locking	Peter Werle and Robert Korman	Fraunhofer Institute, Germany	Ground	CH ₄	1290	Calibration Gas from cylinder + dilution system (every 30 min)	0.5% for 0.1 sec	??????
TDLAS for formaldyhyde	Flowing A stigm atic H erriott cell	Tunable, 2f + sweep integration	Alan Fried		Ground, DC-8, Electra, WP3, C- 130	нсно	2831.6417	calibration and zeroing	20 – 50 pptv in minute (1σ), 150 – 400 pptv in 1 second	6 - 10 %
M id infrared T D L A S	Flowing cell (W hite)	Tunable system with line locking	Peter Werle et al.	Fraunhofer Institut, Germany		N О ; С Н ₄ Н С О Н	1600 3076 2800	System Calibration Gas Permeation System	0.3% for 1.5 sec 0.08% for 25 sec 0.3% for 1.5 sec 0.08% for 25 sec 0.08% for 0.06 sec 0.5% for 1 sec 0.1% for 20 sec 1.4% for 1.5 sec 0.3% for 40 sec	? ? ? ? ?
TDLAS	??????		Harold Schiff			NO ₂ HNO ₃	??????		??????	??????
TDLAS	Flowing White cell	??????	Don Hastie and Miller	??????	Balloon	NO, NO2	??????	??????	??????	??????
TILDAS-36 TILDAS-200	Flowing path	Tunable, direct absorption	M ark Zahniser	Aerodyne Research Inc	Tower Mobile	CH ₄ N ₂ O HNO ₃ NO ₂ NO SO ₂ NH ₃		Calgas HITRAN line parameters	0.1% in 1 sec 500 ppt 1 sec 200 ppt 1 sec 500 ppt 1 sec 500 ppt 1 sec	±5% ±5% ±20% ±20% ±20% ±20% ±20%

Near-IR Aircraft and Balloon Spectrometers

Instrument	Path	Technique	PI	Institution	Platform	Gas	Line (cm ⁻ 1)	Calibration	Precision 1 σ	Accuracy
	30m Open path	Line locked	Glenn Sachse Jim Podolske	NASA LaRC/Ames	DC-8		7118 and 7122	Pre and post mission	Greater of 0.1 ppmv or 2% conc. in 50 msec	10%
JLH-ER-2	Open path	Tunable	Bob Herman	JPL	ER-2	H ₂ O	7294.1	Pre-flight	1-2% in 1 sec	± 5%
	Open path	Tunable	Bob Herman	JPL	W B 57	H ₂ O	7299.4	Pre-flight	1-2% in 1 sec	± 5%
JLH-DC-8	Open path	Tunable	Bob Herman	JPL	DC-8	H ₂ O	7306.8	Pre-flight	??????	??????
NCAR Water	Open path	Tunable	Bruce Gandrud	NCAR			??????	??????	??????	??????
	Open path	Tunable, Balanced ratiometric detection	David Sonnenfroh		Р3 В	H ₂ O	7181.2	??????	??????	??????
SDLA	Open path	Tunable	Georges Durry	CNRS, France		H ₂ O	6046.9, 7181.1(strat) 7188.3(trop) 7185.6(trop) 7183(trop)	Pre-flight	??????	5%-10%
SWS LH	Open path	Tunable	Joel Silver, DC Hovde	Southwest Sciences, Inc	KC-135	H ₂ O		??????	??????	??????
Near infrared TDLAS	Flowing cell (Herriott)	Peltier cooled, tunable system with line locking	Peter Werle et al.		Ground	CO,	4990	Calibration Gas	0.08% for 1 sec	??????
TOTCAP Water	Flowing path	Tunable	Linnea Avallone	LASP/ U.Colorado			7306.75	Pre-flight and post flight	1-2% in 1 sec	5%-10%

•Increasingly-sophisticated scientific questions addressed by *in situ* payloads (aircraft, balloon) has increased demand for higher precision, higher accuracy measurements of tracers, water.

(e.g. CO₂ vs. N₂O tracer correlations)

•Aircraft platforms have duplication with differing techniques for continuous intercomparison.

1800

1600

1400

1200

1000

800

600

M-Siapos 444, 960610

ATM Q3. Tree-O

ATM 03. A KING VEHICLE

IR Vibration-rotation Lineshapes

Linestrength is integrated absorption coefficient

$$S = \int k(\widetilde{v})d(\widetilde{v})$$

$$k(\widetilde{v}) = Sg(\widetilde{v} - \widetilde{v}_o)$$

Natural linewidths ~tens of kHz (msec lifetimes)

Doppler Line Broadening

$$\gamma_D$$
 directly $\propto T^{\frac{1}{2}}$

= 3.581 x 10^{-7} $v_0(T/M)^{1/2}$ cm⁻¹ (~ tens of MHz)

$$k(\widetilde{v}) = \left(\frac{S}{\gamma_D}\right) \left(\ln 2/\pi\right)^{1/2} \exp\left[-(\widetilde{v} - \widetilde{v}_o) \ln 2/\gamma_D^2\right]$$

Collisional Line Broadening

$$\gamma_L \propto 1/T^{1/2}$$

$$g_{L}(\widetilde{v} - \widetilde{v}_{o}) = \frac{\left(\gamma_{L}/\pi\right)}{\left(\widetilde{v} - \widetilde{v}_{o}\right)^{2} + {\gamma_{L}}^{2}}$$

$$\gamma_L = \left[\gamma_A \left(\frac{P_a}{P_0} \right) + \gamma_B \left(\frac{P_b}{P_0} \right) \right] \left(\frac{T_o}{T} \right)^s$$

SBC > FBC SBC= $0.08 \text{ cm}^{-1} \text{ atm}^{-1}(\text{CH}_4) \text{ to } 1.0 \text{ (HNO}_3)$

FBC up to 0.15 cm⁻¹ atm⁻¹ for N₂ on H₂O

Width usually varies smoothly with m.

Mixed Lineshapes and the Voigt Profile

•Pressure-broadening coefficients of H₂O known to depend on rotational quantum numbers of vibe-rot transitions involved, but not always temp dependence (0.6-0.8) [Varanasi]

Spectroscopic needs for in situ laser spectrometers

• Spectroscopic needs are <u>fundamentally different</u> from those of remote sensing spectrometers.

- •Care about behavior of <u>carefully-chosen</u>, <u>isolated</u>, <u>single lines</u>:
 - absolute line strength (precision)
 - E" (temperature change or extrapolation susceptibility)
 - broadening coefficient and temp dependence (extrapolation linearity)
 - temperature dependence of line shape to avoid surprise in modulation methods
 - interferences (esp. for weak lines of CH₄, H₂O, CO₂, O₃ etc.)
 - •Pressure-shifts for instruments line-locked to fixed reference cell pressure.
- For known spectroscopic parameters, absorption method is self-calibrating through Beer's Law.
- Need path length, laser line-width (Doppler cells), pressure, temperature, direct absorption spectrum.

Calibration methods for in situlater spectrometers

REACTIVE GASES

- Chemically, thermally, or photochemically unstable in reference gas cells
- Pre-flight calibration difficult (especially at low Temps and low mixing ratios:
 - sticky (polar) molecules: HNO₃, H₂O, HCl
 - NO, NO₂ permeation tubes
 - H₂CO (Alan Fried) uses Henry's Law Calibration System HLCS
 - H₂O laser spectrometers use chilled-mirror frostpoint hygrometer
- <u>Rely</u> on spectroscopic line parameters that limit measurement uncertainty to ~5-10%
- Use adjacent line normalization where possible (e.g. CH₄ for HCl)

Calibration methods for *in situ* laser spectrometers (contd.)

STABLE GASES

- Pre-flight calibration using gas standards (~1%)
 - •Referenced to NIST or CMDL standards
 - •Easy to map pressure dependence
 - •Very difficult to map temp dependence
- In-flight switching to reference gas cells
 - •Need to be same pressure and temp as sampled atmosphere
- In-flight calibration using reference atmospheric gas lines such as ${\rm CO}_2$
 - •Even seasonal cycle variation in CO_2 is only $\pm 1.4\%$
 - •But still limited by pressure broadening parameters

Measurements of Atmospheric Tracers N₂O, CH₄, CO

	BAND	UNC	ERTAINT	<u>Y</u>			
	<u>Li</u>	ine streng	gths FB	SC			
Strong N ₂ O bands:							
~4.5 µm (2200 cm ⁻¹)	v_3	3%	4%	smooth FBC, S, n, with m:			
				(Fukabori, Varanasi)			
~7.7 µm (1300 cm ⁻¹)	\mathbf{v}_1	3%	4%				
Strong CH ₄ bands:							
~3.3 µm (3000 cm ⁻¹)	v_3	1-2%	2-5%	some differences, line mixing (Fukabori)			
~7.7 µm (1300 cm ⁻¹)	$\mathbf{v_4}$	2-5%	2-5%				
~2.3 µm (4350 cm ⁻¹)	$v_3 + v_4$	2-5%	2-5%				
Strong CO bands:							
~4.8 µm (2100 cm ⁻¹)	fund.	2-5%	5-10%	series var. of n 0.6-0.8 with m (Varanasi)			
[~2.4 µm band (near-IR) too weak for stratosphere]							

Measurements of Atmospheric Tracers N₂O, CH₄, CO (contd.)

For typical aircraft data altitudes (50-300 mbar)

- 2% error in FBC results in ~2% error in final mixing ratio
- 2% error in n results in ~1% error in final mixing ratio

Atmospheric Measurements of H₂O

Minimum-detectable mixing ratio for 10 meter path length and 2 x 10⁻⁵ absorptance:

- Mid-IR is 20 times stronger than near-IR at 1.37 µm
 - 30 parts-per-billion at 1.37 µm (in 1 sec)
 - 1.5 parts-per-billion at 5.9 µm
- Near-IR TDLs available at room (TE cooler) temperatures, and InGaAs detectors are excellent.
- Mid-IR QC lasers will eventually dominate and offer much shorter pathlengths, smaller instruments.

Near-IR Measurements of H₂O

- •Unlike other gases, H₂O mixing ratios span 4 orders of magnitude from trop to strat.
- •Usually <u>calibrate</u> with chilledmirror frost-point hygrometer at <u>room temp.</u>
- •For diff temperatures, extrapolation is necessary.
- •Accuracy in FBC (esp.) and its' T dep is critical.

Instrument (PI)	Line	intensity S	FBC	SBC	E"	n	reported	reported	change	change
	cm-1	cm-1/molec.cm-2	cm-1/atm	cm-1/atm	cm-1		inten. Err	FBC err	rel to Toth	rel to Toth
		(296K)	(296 K)	(296 K)					intensity	FBC
DLH (Sachse)	7139.107	1.20E-20	0.0935	0.504	325.348	0.69	2-5%	5-10%		
PSI (Sonnenfroh)	7182.995	5.30E-21	0.098	0.488	142.279	0.76	2-5%	5-10%		
JLH ER-2 (Herman)	7294.1360	1.900E-20	0.0985	0.433	23.7940	0.78	2-5%	5-10%	24%	-16%
JLH WB-57F (Herman)	7299.4490	1.300E-20	0.1039	0.443	42.3720	0.68	2-5%	ave or est	34%	-11%
JLH DC-8 (Herman)	7306.7360	2.000E-20	0.0973	0.490	79.4960	0.72	2-5%	5-10%	10%	13%
C-130 (Gandrud)										
TOTCAP (Availone)										
SW Sciences	7612.0000									

Measurements of Water Isotopes H₂O, HDO, H₂¹⁸O, H₂¹⁷O

- Determine the processes that regulate upper tropospheric (UT) water vapor, and its' transport into the lower stratosphere (LS).
- •Does Strat-Trop Exchange occur through isolated deep convection in the tropics, or gradual uplift of high cirrus or ice sublimation?
- •HDO preferentially partitioned into the condensed phase: HDO/H₂O decreases rapidly to top of convective system.
- •Delta-D (HDO) changes by large amount (tens of %).
- If adjacent isotopic lines used, precision more important than accuracy.

Near-IR and Mid-IR Spectroscopy of Water Isotopes H₂O, HDO, H₂¹⁸O, H₂¹⁷O

Near-IR 2.63 µm

HDO linestrength→ x 2

Mid-IR 6.7 µm

- Near-IR lines weaker than Mid-IR, and have stronger interferences from CO₂, other gases
- Unlike Mid-IR, Near-IR offers CO₂ normalization

Mid-IR Measurements of Water Isotopes H₂O, HDO, H₂¹⁸O, H₂¹⁷O

- •Region first identified by Rinsland et al. 1984 balloon measurements of HDO.
- •ATMOS studied lower stratosphere.
- •BLISS made first in situ TDL measurements in 1989.
- •WISP developed for WB57-F, but only flown in test flight with no lasers.
- •Community awaits *in situ* measurements near tropopause region at high spatial resolution: uncertainty in measured T ~1% at night.

Water Isotope Ratio Measurement Error from Temp Uncertainty of 2 Degrees							
		5	50	200			
		СН	4 mixing-rat	tio (ppmv)	0.8	1.0	1.5
		A	Atmospheric	Temp (K)	210 K	198 K	245 K
		Atmosp	heric Pressu	re (mbar)	60 mbar	100 mbar	300 mbar
					Error % fro	m +2 deg eri	ror in Temp
Species	ν (cm ⁻¹)	S (296 K)	E" (cm ⁻¹)	n (cm ⁻¹)			
CH4	1483.79230	3.65E-22	157	0.75	-0.6		
CH4	1483.83448	2.29E-22	157	0.75			
H218O	1483.92606	8.39E-23	550	0.49	+0.5	+0.6	+0.4
HDO	1484.10644	2.32E-23	226	0.74	<0.1	< 0.1	< 0.1
H2O	1484.25726	1.78E-23	1899	0.50	Too weak		
H217O	1484.51094	1.97E-23	205	0.59	< 0.1	-0.1	-0.4
H218O	1485.13361	6.25E-23	1907	0.78	+0.5	+0.6	+0.5
(HDO/H217O)					<1 per mil	<1 per mil	4 per mil

Near-IR and Mid-IR Isotopic CO₂

Near-IR 2.05 µm

Linestrength→ x 2000

Mid-IR 4.24 µm

SPECTRAL REGION	¹³ CO ₂ /CO ₂	18OCO/CO ₂		
Near-IR MET TDLS 4886 cm ⁻¹	-24 per mil/deg K	+19 per mil/deg K		
Near-IR TEGA TDLS 4876 cm ⁻¹	-6 per mil/deg K	TBD		
Near-IR 4868 cm ⁻¹	+1 per mil/deg K (but dynamic range may limit to 5 per mil total).	Not possible		
Mid-IR QCLS strong region at 2302 cm ⁻¹	-2 per mil/deg K	-1 per mil/deg K		
Mid-IR QCLS special 6- isotope region at 2037 cm ⁻¹	-1 per mil/deg K, but can fit temp from Q- branch	TDB		

Near-IR Laser Absorption Spectrometer for Global CO₂ Mapping

JPL: Robert Menzies (PI), Chris Webster, David Tratt, Gary Spiers

Colorado State Univ.: Graeme Stevens Coherent Technologies: Mark Philips

- Near-nadir cw laser (rare-Earth ion doped) illumination of Earth's surface from orbit.
- Analysis of integrated path differential absorption at selected transmit frequencies within CO₂ absorption line region to retrieve tropospheric CO₂ profiles.
- Retrieval of CO₂ profiles in lower and middle troposphere by differential absorption in column above land or ocean backscattering surface.
 - Need column to 1-2 ppmv (0.3%) to define spatial gradients.
 - Code Y IIP funded for DC-8 demonstration (2003).

Near-IR Laser Absorption Spectrometer for Global CO₂ Mapping

- •Two near-IR regions suitable for satellite measurements of global CO₂ column
 - 1.57 μ m (30012 <- 00001) band

[Chip Miller, Linda Brown: sharper cores and stronger wings: 2 Voigts reqd.]

- $2.05 \, \mu m$ (30013 <- 00001) band
- •Optimal combination of optical depth, insensitivity to temperature, and no interferences.

Outlook for TDL and QC in situ Laser Spectrometers

TDL and QC LAS offer excellent sensitivity, specificity, precision, and response time, especially for small molecules.

- As *in situ* Earth instrument capability has evolved with aircraft missions, laser spectrometers have a more focused niche: H₂O, N₂O, CH₄, CO, HCl, isotopic measurements, H₂CO
 - •CO₂ better done with IR absorption (4.3 μm) LiCor NDIR (Wofsy, Sachse, Avallone, etc.): precision 0.01%, accuracy 0.03%.
 - LIF better for radicals OH, NO₂, ClONO₂, ClO, Cl₂O₂, etc.
 - •CRDS detection has potential for improved precision, but test flight data (CH₄ precision 0.3%) achieved in 10 sec compare to 1.3 sec for conventional LAS.
- *In situ* laser spectrometers for all gases including H₂O will soon be based on mid-IR room temperature cw QC lasers with HgCdTeZn room temperature detectors.
 - •For H₂O, enormous flight heritage of Near-IR instruments, and excellent InGaAs detectors will delay transition.

Specific Spectroscopic Measurement Needs – Near-IR

<u>H₂O:</u>

- Immediate need for H₂O in Near-IR 1.37 μm region for 8 existing, flight-tested aircraft and balloon instruments.
- Hitran2000: strong lines targeted by instruments rely on outdated incorrect (?) measurements!
- Linestrengths, FBC, temp dependences, pressure shifts, partition functions.

<u>CO</u>2:

- Long-term need for Near-IR CO₂ region for global CO₂ LAS measurements. Two near-IR regions suitable for satellite measurements of global CO₂ column
 - $1.57 \, \mu m \, (30012 < -00001) \, band$
 - $2.05 \, \mu m \, (30013 < -00001) \, band$
- All parameters important, including line shifts.

Water isotopes H_2O , HDO, $H_2^{18}O$ at 2.7 µm better measured in mid-IR.

<u>CH</u>₄: better measured in mid-IR.

Specific Spectroscopic Measurement Needs – Mid-IR

- Tracer gases N₂O, CH₄, CO
 - Better Lorentz broadening coefficients and temp dependence for CH₄ (V₃), N₂O (V₃), and CO fundamental, better partition functions for temp corrections.
- Reactive gases HCl, NO₂, H₂CO, etc
 - HCl well-measured
 - Linestrengths and broadening coefficients needed for H₂CO at 1740 cm-1 (Zahniser/Brown?)
- Isotopic species:
 - Water isotopes
 - CO_2 isotopes
 - CH₄ isotopes, N₂O isotopes, CO isotopes